Unemployment Forecasting Challenge

Predicting Unemployment with Demographic and Labor Force Characteristics

Emma Pérez, Edgar Chicurel and Elena Yustres

14/03/2023

The Plan

Descriptive Statistics and Data Pre-Processing

Our Model(s)

03 Conclusions & Limitations

OI Introduction:

Descriptive Analysis and Data Pre-Processing

The Current Population Survey (CPS): Descriptive Statistics

The dataset is severely unbalanced toward employed individuals !

Pre-Processing

- Removed variables with more than 50% of NAs or more than 50% of 0s
- Removed all nominal income variables
- For income ranking variables, removed text "th%"
- Transformed values like "99", "66", "Not in Universe", "Didn't Respond" to NAs
- Transformed categorical variables to factors and removed variables with many categories, e.g. "state"
- Remove the three variables which **perfectly predict 'unem'**

O2 Our Model(s)

Modeling: Selecting Relevant Variables and Predicting Individual Unemployment

LASSO

- Elastic Net models: regularization incorporates penalty term that encourages model sparsity and prevents overfitting
- Preliminary feature selection: choose variables most strongly associated with *unemployment*
- Obtain 7 relevant variables

Logistic

- Data from 2013 to 2017
- Modelling probability of unemployment based on a set of predictor variables

Random Forest I & II

- Improve Logistic AUC
 Machine Learning: Random Forest
- Same predictors as Logistic and type = "Classification"
- First try: 2016 & 2017
- Second try: 2015 & 2016

- Almost identical AUC

Confusion Matrix, 10% threshold

Prediction	0	1
0	132043	2071
1	4309	1508

Computational restrictions:

Random Forest I & II

Variable importance

rf.train

// RF III: Random Forest With Undersampling

- Try to improve even more with resampling methods
- Undersampling: reducing number of employed people in the training set

Prediction01- Prediction for 2018
improved a lot:01190878261172652753

Threshold = 0.5 Sensitivity = 0.87 Specificity = 0.77

Random Forest III

Conclusions & Limitations

Conclusions

- Clean
 Select
 LASSO
 Logistic
 RF
 RF
 Kr
 with undersampling
- Our winner: RF model with 13 variables and down-sampling (AUC = 0.901)

- Challenges:
 - \circ Cleaning the data many variables in the CPS dataset with different classifications
 - Restrictions on computational capabilities preventing inclusion of data from more years
 - 🕈 Sample size, models performed (slightly) better

Thank you for your attention!