
Project Survey II - Predicting Unemployment
Edgar Chicurel, Emma Perez and Elena Yustres

2023-02-19

library(haven)
library(tidyverse)

library(knitr)

library(gmodels)
library(ggplot2)

library(openxlsx)
library(skimr)

library(ggplot2)
library(janitor)

library(readr)

library(dplyr)
library(labelled)

library(readr)
library(glmnet)

library(randomForest)
library(caret)

library(corrplot)
library(ggplot2)

library(pROC)

library(imbalance)

Set random seed to ensure reproducibility of our models

set.seed(1234)

Introduction
Unemployment is a social scourge that imposes costs on society far beyond financial ones. Unemployed individuals not only lose income but also
face challenges to their physical and mental health, which translates into negative effects on families, relationships and communities.

Therefore, we aim at delineating a strategy to understand which features of individuals (or their households) are most closely associated with the
probability of being unemployed. Eventually, we want to be able to predict individual unemployment status using modelling techniques.

For that, we will use data from the Current Population Survey (CPS) monthly survey, which provides information about key demographic and labor
force characteristics.

After performing the necessary transformations and feature selection techniques, we will perform a brief descriptive exploratory analysis. We then
use three different types of models - Lasso, Logistic and Random Forest - to select relevant variables for predicting unemployment. Using data
from the survey in 2018, we will evaluate the performance of our model and draw a series of final conclusions concerning model choice.

Pre-processing the data
We first download the dataset for the 2017 CPS dataset. We see that it has 164,632 observations and 477 columns.

Read the data

data_full <- read_delim("cps_2017.csv", delim = ";")

Summary of the data

dim(data_full)

[1] 185914 477

Hence, we split the data into three sections in order to perform the necessary transformations more comfortably. For all three sections, we remove
columns that are made up entirely of missing values as well as those for which NAs make up more than half of the observations. We then make
the necessary transformations, such as converting character variables into factors or recoding some columns as appropriate.

FIRST SECTION

Select first section

df_first <- data_full[, 1:150]

 # Remove columns with all NAs

 df_first <- df_first[, colSums(is.na(df_first)) < nrow(df_first)]

 # Remove columns with more than 50% NAs
 df_first <- df_first[, colMeans(is.na(df_first)) <= 0.5]

 # Select final columns and transform appropriate ones to factors
 df1 <- df_first %>%

 transmute(month,
 hhid,

 hhid2,
 hhseq,

 pppos,
 perno,

 hjrid,

 peridh,
 age,

 popstat = as.factor(popstat),
 female,

 wbhaom = as.factor(wbhaom),
 forborn,

 citizen,

 citstat = as.factor(citstat),
 penatvty = as.factor(penatvty),

 veteran,
 married,

 marstat = as.factor(marstat),
 hhrel = as.factor(hhrel),

 perhh,
 nhhchild,

 pfrel = as.factor(pfrel),

 child,
 ftptlyr = as.factor(ftptlyr),

 wksrec = as.factor(wksrec),
 wrk = as.factor(wrk),

 lfstat = as.factor(lfstat),
 empl,

 unem,

 nilf,
 cert,

 state = as.factor(state),
 csr = as.factor(csr),

 centcity,
 suburb,

 rural,
 educ = as.factor(educ),

 indly2d_03 = as.factor(indly2d_03),

 occly2d_03 = as.factor(occly2d_03))

Next, we decided to keep only income variables in real terms (removing nominal) and those related to the family and the individual (but not to
household)

SECOND SECTION

Read the data again and select second section (+ ID columns)

df_second <- read_delim("cps_2017.csv", delim = ";", col_select = (c("hhid", "hhid2", "perno", "occ3d_80":"rinch_

oth")))

 # See proportion of NAs in each variable

 sapply(df_second, function(x) sum(is.na(x)/nrow(df_second)))

 # Remove columns with all NAs
 un_non_nas <- df_second[, colSums(is.na(df_second)) < nrow(df_second)]

 # Remove columns with more than 50% NAs

 un_non_nas <- un_non_nas %>%

 purrr::discard(~sum(is.na(.x))/length(.x)* 100 >=50)

 # Specific transformations

 # 'inch_5pct' indicates if the household is in the top 5% by household income
 table(df_second$inch_5pct)

 # Recode inch_5pct to '1' for those in top-5 and '0' for the rest

 un_non_nas <- un_non_nas %>% mutate(inch_5pct = as.factor(case_when(
 inch_5pct == "In top 5%" ~ 1,

 inch_5pct == "Not in top 5%" ~ 0)))

 # 'incf_pct' indicate the percentile ranking of the family and the household
 table(un_non_nas$incf_pct)

 table(un_non_nas$inch_pct)

 # Remove the text and make them factors

 values <- unique(un_non_nas$inch_pct)

 # Transformation
 str_view_all(values, "(rd|nd|th)? 5%")

 un_non_nas <- un_non_nas %>% mutate(

 across(where(is.character),

 function(x) str_remove(x, "(rd|nd|th)? 5%")))

 un_non_nas <- un_non_nas %>% mutate(
 across(where(is.character),

 function(x) str_replace(x, "Lowest", "20")))

 un_non_nas <- un_non_nas %>% mutate(
 across(where(is.character),

 function(x) str_replace(x, "Top", "1")))

 un_non_nas <- un_non_nas %>% mutate(

 across(where(is.character),
 function(x) as.factor(x)))

Select final columns

df2 <- un_non_nas %>% select(hhid,
 hhid2,

 perno,
 managly03,

 inc_paw_mnt,
 ends_with("pct"),

 starts_with("rincf"),
 starts_with("rincp"))

THIRD SECTION

 # Find position of rinch_oth

 rinch_oth_position <- which(names(data_full) == "rinch_oth")

 # Check number of columns in data frame
 num_cols <- ncol(data_full)

 # Select third section (+ ID columns)
 selected_columns <- c("hhid", "hhid2", "perno", names(data_full)[rinch_oth_position:num_cols])

 df_third <- data_full[, selected_columns, drop = FALSE]

 # Remove columns with all NAs
 df_third <- df_third[, colSums(is.na(df_third)) < nrow(df_third)]

 # Remove columns with more than 50% NAs

 # Calculate the proportion of missing values in each column
 prop_missing <- colMeans(is.na(df_third))

 # Identify columns with more than 50% missing values

 cols_to_remove <- which(prop_missing > 0.5)

 # Remove those columns from the data

 df_third <- df_third[, -cols_to_remove]

 # Select final columns and make appropriate transformations

 df3 <- df_third %>% mutate(rinch_oth = NULL,
 fshh_val = NULL,

 fshh_num = NULL,
 flhh_num = NULL,

 wichh_num = NULL,

 filestat = as.factor(filestat),
 margtax = as.factor(margtax),

 agi = as.numeric(na_if(agi, "None or not in universe")),
 fedret = NULL,

 fedtaxac = NULL,
 sttaxac = NULL,

 achild_tc = NULL,

 povuniv = NULL,
 pvlfam = NULL,

 pvlpp = as.factor(pvlpp),
 pvratio_fam = NULL,

 hins = NULL,
 hiep = NULL,

 hipind = NULL,
 himcaid = NULL,

 hiothpub = NULL,

 hiepdep = NULL,
 hipindep = NULL,

 himcare = NULL,
 hiprivdep = NULL,

 hiepsp = NULL,
 hipindsp = NULL,

 hiprivsp = NULL,

 hi_emp = NULL,
 higj_all = NULL,

 higj_part = NULL,
 higj_none = NULL,

 higj_allprt = NULL,
 higj_pind = NULL,

 higj_priv = NULL,
 fmoop = as.numeric(na_if(fmoop, "Not in Universe")),

 fotcval = NULL,

 fmedval = NULL,
 pmoop = NULL,

 phipval = NULL,
 dis_drs = NULL,

 dis_ear = NULL,
 dis_eye = NULL,

 dis_out = NULL,

 dis_phy = NULL,
 dis_rem = NULL,

 mig = as.factor(mig),
 mig_flag = NULL,

 mstatei = NULL,
 mcountyi = NULL,

 mmcdi = NULL,
 mplacei = NULL,

 mnyci = NULL,

 m5statei = NULL,
 m5countyi = NULL,

 m5mcdi = NULL,
 m5placei = NULL,

 m5nyci = NULL,
 mig_m = NULL,

 mig_mr = NULL,

 mig_r = NULL,
 mig_rr = NULL,

 mig_sh = NULL,
 st_lyr = NULL

)

 df3$energy_val <- ifelse(df3$energy_val == "NIU/None", 0, as.numeric(df3$energy_val))
 df3$fica <- ifelse(df3$fica == "None", 0, as.numeric(df3$fica))

 df3$pvcfam <- as.numeric(df3$pvcfam)

Once we have performed the appropriate transformations to the three sections, we can merge them together:

Join three datasets

data <- df3 %>%
 left_join(df1, by = c("hhid", "hhid2", "perno")) %>%

 left_join(df2, by = c("hhid", "hhid2", "perno"))

We now have the full dataset again, so we make some more transformations. We first transform all dummy variables (i.e. variables with values 0
and 1) into factors and remove observations where the dependent variable has missing values.

We see that many numeric variables have a large number of “0s”, and we want to remove those. Hence, we create two separate dataframes for
factor and numeric variables so that we can delete columns with more than half of observations taking on the value 0 only from the latter. We then
put these two dataframes back together.

Finally, once we have created data_clean , we remove other data objects so far that we will not need for the following sections.

Transform dummies into factors and remove rows with missing values for 'unem'

data <- data %>%
 mutate_if(~ all(. %in% c(0, 1, NA)), as.factor) %>%

 drop_na(unem)

Create dataframe 'factor' with all factor variables in 'data'

factor <- data %>%
 select(-c(hhid, hhid2, perno, hhseq, hjrid, peridh))%>%

 select(where(is.factor))

Create dataframe 'numeric' with all numeric variables in 'data'

numeric <- data %>%

 select(-c(hhid, hhid2, perno, hhseq, hjrid, peridh))%>%
 select(where(is.numeric))

Remove columns with more than 50% 0s in 'numeric'

zero_prop <- colMeans(numeric == 0, na.rm = TRUE)
cols_to_remove <- which(zero_prop > 0.5)

df_clean <- numeric[, -cols_to_remove]

Put back together 'factor' and 'numeric' variables

data_clean <- factor %>% cbind(df_clean)

Remove objects used for cleaning data and not used for descriptive/model creation and evaluation

remove(data, data_full, df_clean, df_first, df_second, df_third, df1, df2, df3, factor, numeric, un_non_nas, cols
_to_remove, num_cols, prop_missing, rinch_oth_position, selected_columns, values, zero_prop)

Descriptive Analysis
Before selecting the most relevant variables to predict individual unemployment, it is important to carry out some descriptive statistics to learn
about the distribution of our dependent variable and the relationship among key predictors in the survey.

Dependent variable: individual unemployment

Positive vs. negative class of `unem`

table(data_clean$unem)

0 1

139949 4078

We see that only 3576 individuals in our sample are unemployed, which amounts to less than 3% of all respondents in the survey. This means our
dataset is very unbalanced toward the “negative class” (employed individuals). We can see this running the following code:

imbalanceRatio(data_clean, classAttr = "unem")

[1] 0.02913919

We can see this visually below:

Create a bar plot using ggplot2

data_clean %>%
ggplot(aes(x = unem)) +

 geom_bar(aes(fill= unem)) +

 labs(x="Unemployment Status", y = "", title = "Distribution of Unemployment in the Sample") +
 scale_x_discrete(labels = c("Employed", "Unemployed")) +

 guides(fill = FALSE) +
 theme_light()

Education level is generally an important variable affecting the chances of becoming unemployed. Below we see the distribution of the unem

variable across the five different levels of education included in the survey. It seems that, among all education levels, the highest proportion of
employed people in the sample have some college education, followed by some advanced degree.

#Order levels
levels(data_clean$educ) <-c("HS", "LTHS", "Some college", "College", "Advanced")

#Plot of unemployment by education level

data_clean %>%

ggplot(aes(x = unem)) +
 geom_bar(aes(fill=unem)) +

 facet_grid(. ~ educ) +
 scale_x_discrete(labels = c("Employed", "Unemployed")) +

 labs(x= "Unemployment Status", y ="", title = "Unemployment Status by Education Level") +
 guides(fill = FALSE) +

 theme_light()

We can conduct the same analysis by gender. Among those who are employed, the proportion of females is higher than that of males in the
sample. For the unemployed the difference is smaller, but men are proportionately more frequent than women in this category.

#Plot of unemployment by gender

data_clean %>%
 ggplot(aes(x = unem, fill = female)) +

 geom_bar(position = "dodge", width = 0.8) +
 scale_x_discrete(labels = c("Employed", "Unemployed")) +

 scale_fill_manual(name = "Gender",
 breaks = c(0, 1),

 labels = c("Male", "Female"),

 values = c("blue", "red")) +
 labs(x= "Unemployment Status", y="", title="Unemployment Status by Gender") +

 theme_light()

Correlations
Finally, we can try to assess the dependencies among our predictors to check for any important linear relationships. Below we see that obviously
all income-related variables are highly correlated among each other. We also see that pvcfam (family poverty level cutoff) and perhh (number of

persons in the household) are highly correlated.

df_numeric <- data_clean %>% select_if(is.numeric) %>% drop_na() %>% select(-month)

Create correlation matrix
cor_matrix <- cor(df_numeric)

Plot correlation matrix

corrplot(cor_matrix, method = "circle", col.names = names(cor_matrix))

Models: Predicting Unemployment with Survey Data
We are now ready to set up our models and make our predictions. However, before setting up and running our models, we noticed that there are
three variables that perfectly predict (or correlate) with our dependent variable: lfstat (labor force status), empl (employment), wrk (work

situation last year).

Remove variables that predict dependent variable perfectly

data_clean <- data_clean %>%
 select(-c(lfstat, empl, wrk))

Moreover, we want to include data from other years in our models (before 2017) and be able to evaluate the performance of our models later.
Hence, we need to make the appropriate transformations to data from other years and to the test dataset. In order to save space, we will source a
previously created code:

source("join_code.R", local = knitr::knit_global())

This code yields two main “data objects”: full_data (data from important variables for years between 2013 and 2017) and test_data_2018

(data from the same important variables for the year 2018).

LASSO: regularization of model parameters and feature selection
In order to create a model that will predict unemployment status, we wanted to carry our a preliminary feature selection process. Hence, we chose
to run a LASSO (Least Absolute Shrinkage and Selection Operator) regression on our cleaned data.

In a nutshell, Lasso regression is often used to select the most important features from a large set of potential predictors by shrinking the
coefficients of less important variables towards zero and effectively removing them from the model. This is useful when dealing with high-
dimensional data like ours, thus preventing overfitting and enhancing interpretability.

After transforming our factor variables into numeric, defining our dependent and independent variables and setting a grid, we run the model and
specify that the target variable (Y) is a binary factor variable (as.factor(Y)) with a binomial distribution (family = “binomial”). The alpha parameter is
set to 1 to perform LASSO regression.

We then obtain and print the coefficients of the LASSO model.

Remove all rows with missing values and transform factor variables into numeric ones

datt <- data_clean %>%
 drop_na() %>%

 mutate_if(is.factor, as.numeric)

Define regressors (all variables except the target) and dependent variable for the model (target)

X <- datt %>% select(-unem)

Y <- datt$unem

Specify the grid vector (sequence of 100 numbers, spaced logarithmically between 10^10 and 10^-2)

grid <- 10^seq(10, -2, length = 100)

Run the LASSO model

lasso_model <- cv.glmnet(x = as.matrix(X), y = as.factor(Y),

 lambda = grid, alpha = 1, family = "binomial")

Find optimal lambda value that minimizes cross-validation error

lambda_min <- lasso_model$lambda.min

Get coefficients of LASSO model with optimal lambda value

lasso_coef <- coef(lasso_model, s = lambda_min)

Print coefficients

print(lasso_coef)

These coefficients represent the effects of the predictor variables (in X) on the binary outcome variable (Y) after penalization by the LASSO
algorithm. We want to summarize this output, for which we create a dataframe of predictions and sort variable coefficients in descending order of
importance:

Predictions of LASSO

predict(lasso_model, newx=as.matrix(X)[1:10,], s="lambda.min")

lambda.min

[1,] -3.911150
[2,] -3.818122

[3,] -4.004177

[4,] -3.725095
[5,] -3.725095

[6,] -3.818122
[7,] -3.253777

[8,] -3.725095
[9,] -4.170335

[10,] -3.183196

Build dataframe with coefficients

as.data.frame(as.matrix(predict(lasso_model, type="coefficients", s="lambda.min"))) %>%

 mutate(across(c(lambda.min), round, 3)) %>%
 arrange(desc(abs(lambda.min))) %>%

 filter(lambda.min != 0)

lambda.min

(Intercept) -2.050
nilf -0.644

fshh 0.576

hipriv -0.356
ftptlyr 0.200

wksrec -0.136
margtax -0.093

Above we can see that seven variables seem to be significant at explaining unemployment: we will include these variables (among others) in the
two competing models we run below so as to predict unemployment: logistic and Random Forest.

The important variables are related to different topics in income levels and labor market situation of the individual:

Presence in labor force (nilf)
Someone receiving of food stamps in the household (fshh)
Having private health insurance (hipriv)
Full/part time work (ftptlyr)
Weeks worked previous year (wksrec)
Marginal tax rate (margtax)
Person in poverty (povpp)

LOGISTIC
First, logistic regression can be used to predict the probability of a binary outcome, in this case the likelihood of an individual being unemployed,
based on various factors such as age, gender, education level, income, etc. The function used in logistic regression is known as the sigmoid
function. It maps any input value to a value between 0 and 1, which can be interpreted as a probability.

We start by removing missing values from our data. We then train the logistic model with the predictors selected among the 33 variables in the
full_data dataset. We use information from years 2013 to 2017.

Drop NAs from train data

data_train <- full_data %>% drop_na(unem,age,female,nilf, fshh,margtax,povfam,hipriv,ftptlyr,povpp,wksrec,educ,ri

ncf_all,rincp_wag)

Run the logit model

logit <- glm(formula = unem ~ age+female+nilf+ fshh+margtax+povfam+hipriv+ftptlyr+povpp+wksrec+educ+rincf_all+rin

cp_wag, data = data_train, family = binomial)

summary(logit)

Call:
glm(formula = unem ~ age + female + nilf + fshh + margtax + povfam +

hipriv + ftptlyr + povpp + wksrec + educ + rincf_all + rincp_wag,

family = binomial, data = data_train)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5845 -0.1759 -0.1284 0.0000 3.4439

Coefficients: (5 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.255e+00 5.545e-02 -76.724 < 2e-16 ***

age -2.485e-03 5.992e-04 -4.147 3.36e-05 ***
female1 -3.140e-01 1.773e-02 -17.714 < 2e-16 ***

nilf1 -2.013e+01 3.818e+01 -0.527 0.597913
fshh1 6.065e-01 2.346e-02 25.852 < 2e-16 ***

margtax10 1.977e-01 2.931e-02 6.746 1.52e-11 ***
margtax15 2.318e-01 2.626e-02 8.829 < 2e-16 ***

margtax25 1.785e-01 3.951e-02 4.516 6.30e-06 ***

margtax28 2.868e-01 8.098e-02 3.541 0.000399 ***
margtax33 3.001e-01 1.547e-01 1.939 0.052479 .

margtax35 5.093e-01 5.229e-01 0.974 0.330060
margtax40 1.095e+00 2.773e-01 3.950 7.82e-05 ***

povfam1 1.110e-02 2.621e-02 0.424 0.671847
hipriv1 -4.351e-01 1.950e-02 -22.309 < 2e-16 ***

ftptlyrFull-time, part year 3.046e+00 4.543e-02 67.032 < 2e-16 ***

ftptlyrNonworker 3.739e+00 3.133e-02 119.326 < 2e-16 ***
ftptlyrPart-time, full year 6.243e-02 4.701e-02 1.328 0.184203

ftptlyrPart-time, part year 9.479e-01 1.319e-01 7.189 6.52e-13 ***
povpp1 NA NA NA NA

wksrecFT: 14-26 weeks -3.576e-01 4.948e-02 -7.226 4.97e-13 ***
wksrecFT: 27-39 weeks -3.804e-01 5.014e-02 -7.586 3.29e-14 ***

wksrecFT: 40-47 weeks -1.031e+00 5.212e-02 -19.785 < 2e-16 ***
wksrecFT: 48-49 weeks -1.403e+00 7.296e-02 -19.235 < 2e-16 ***

wksrecFT: 50-52 weeks NA NA NA NA

wksrecNonworker NA NA NA NA
wksrecPT: 13 weeks or less 1.878e+00 1.349e-01 13.924 < 2e-16 ***

wksrecPT: 14-26 weeks 1.134e+00 1.354e-01 8.378 < 2e-16 ***
wksrecPT: 27-39 weeks 9.362e-01 1.389e-01 6.739 1.60e-11 ***

wksrecPT: 40-47 weeks 3.114e-01 1.446e-01 2.153 0.031293 *
wksrecPT: 48-49 weeks NA NA NA NA

wksrecPT: 50-52 weeks NA NA NA NA

educCollege 2.305e-01 4.346e-02 5.304 1.13e-07 ***
educHS 6.785e-01 4.067e-02 16.681 < 2e-16 ***

educLTHS 6.083e-01 4.412e-02 13.787 < 2e-16 ***
educSome college 4.472e-01 4.096e-02 10.918 < 2e-16 ***

rincf_all -9.011e-07 1.558e-07 -5.785 7.25e-09 ***
rincp_wag -1.055e-06 3.493e-07 -3.021 0.002520 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 160983 on 547199 degrees of freedom
Residual deviance: 101135 on 547168 degrees of freedom

AIC: 101199

Number of Fisher Scoring iterations: 19

We see that we have many of our variables are significant. Our AIC (Akaike Information Criterion), which is a measure of the goodness of fit of our
statistical model, is 101199.

Evaluating the performance of our model: CPS 2018 as ‘test data’

After running our model, we can now make predictions using our test data. Rather than for training the model, we will use this dataset to evaluate
how well the model generalizes to new, unseen data.

Just like we did with train data, we drop NAs and create predictions of the binary outcome variable for the test set.

The code below generates predicted probabilities for the binary outcome variable in test_data_2018 . The argument “response” specifies that the

predicted probabilities should be returned instead of predicted classes. We then convert the predicted probabilities to binary outcomes, where 1
represents the positive class and 0 represents the negative class by using an arbitrarily chosen threshold of 0.1.

The choice of threshold is context-specific and it very much depends on the trade-off between false positives and false negatives. A lower
threshold (e.g., 0.05) would result in more predicted positives (i.e. unemployed people), while a higher threshold (e.g., 0.2) would result in fewer
predicted positives.

Drop NAs from test data

test_data_2018 <- test_data_2018 %>% drop_na(unem,age,female,nilf, fshh,margtax,povfam,hipriv,ftptlyr,povpp,wksre
c,educ,rincf_all,rincp_wag)

Create predictions
pred_log <- predict(logit, newdata = test_data_2018, "response")

pred_log <- ifelse(pred_log > 0.1, 1, 0)

Next, we compare the predicted classes to the true classes in the test set to summarize the performance of the classification model using the
confusion matrix.

We see that the model correctly classifies 93% of employed people (sensitivity) and 65% of unemployed (specificity). We thus get an accuracy of
93%. Also, our sensitivity is higher than the specificity, which makes sense because of the imbalanced nature of our dataset: since we have many
negative classes in the dataset (relative to positive classes), the model is biased towards predicting negative cases. This can result in a high
sensitivity but a low specificity

Create confusion matrix

confusionMatrix(table(pred_log,test_data_2018$unem))

Confusion Matrix and Statistics

pred_log 0 1

0 128105 1242
1 8247 2337

Accuracy : 0.9322

95% CI : (0.9309, 0.9335)
No Information Rate : 0.9744

P-Value [Acc > NIR] : 1

Kappa : 0.3034

Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.9395

Specificity : 0.6530

Pos Pred Value : 0.9904
Neg Pred Value : 0.2208

Prevalence : 0.9744
Detection Rate : 0.9155

Detection Prevalence : 0.9244
Balanced Accuracy : 0.7962

'Positive' Class : 0

To finish off the logistic model evaluation sub-section, one common metric for evaluating model performance is the receiver operating characteristic
(ROC) curve. The ROC curve is a plot of the true positive rate (sensitivity) against the false positive rate (1 - specificity) for different classification
thresholds. Moreover, in this case, an area under the ROC curve (AUC) of 1.0 indicates perfect classification performance, while a model with an
AUC of 0.5 indicates performance no better than random guessing.

Calculate and print AUC

roc_auc <- auc(test_data_2018$unem, pred_log)
print(paste0("AUC: ", round(roc_auc, 2)))

[1] "AUC: 0.8"

Plot ROC curve

roc_rf <- roc(test_data_2018$unem, pred_log)

plot(roc_rf, col="darkblue", print.auc = TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2),
 grid.col=c("green", "red"), max.auc.polygon=TRUE,

 auc.polygon.col="lightblue", print.thres=TRUE)

In our case, AUC is 0.79. Our logistic model thus has moderate to good discriminative power.

RANDOM FOREST
While our logistic model perfomed reasonably well, we also try running a Random Forest model. By combining multiple decision trees to improve
the accuracy and generalization performance of models, this machine learning algorithm can be used for classification tasks. Some of its
advantages are that it handles well high-dimensional data, it is relatively insensitive to noise and outliers, it can capture non-linearities and it can
handles missing data and unbalanced classes.

First trial: training with 2 most recent years (2016,2017)

We run the Random Forest model with the same variables as with the logistic model we ran above. However, we must limit the data to two years
due to restrictions on computational capacity. We first try with the years 2016 and 2017.

Pick 2016 and 2017 for train data

data_train_rf <- data_train %>% filter(year %in% c(2016, 2017))

Run the RF model with significant variables from LASSO

rf.train <- randomForest(unem ~ age+female+nilf+ fshh+margtax+povfam+hipriv+ftptlyr+povpp+wksrec+educ+rincf_all+r

incp_wag, data = data_train_rf, type = "classification", importance = T)

As a complex machine learning model, the interpretation of Random Forest models is more challenging than for traditional statistical models.
varImpPlot() can be used to plot the variable importance of our random forest model.In our plot, the most important variables are listed at the

top.

Marginal importance of variables in the model

varImpPlot(rf.train, type=1, pch=20)

Again, we use survey data from 2018 to make our predictions, create the confusion matrix and evaluate model performance.

Change class to "probability" to draw AUC

pred_probs <- predict(rf.train, newdata = test_data_2018, type = "prob")

Choose threshold: 0.013 which is the one selected by the ROC

pred_threshold <- ifelse(pred_probs[,2] > 0.013, "1", "0")

Create confusion matrix again

confusionMatrix(table(pred_threshold, test_data_2018$unem))

Confusion Matrix and Statistics

pred_threshold 0 1
0 117995 892

1 18357 2687

Accuracy : 0.8624

95% CI : (0.8606, 0.8642)
No Information Rate : 0.9744

P-Value [Acc > NIR] : 1

Kappa : 0.1825

Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.8654

Specificity : 0.7508
Pos Pred Value : 0.9925

Neg Pred Value : 0.1277
Prevalence : 0.9744

Detection Rate : 0.8432

Detection Prevalence : 0.8496
Balanced Accuracy : 0.8081

'Positive' Class : 0

Calculate and print AUC

roc_auc <- auc(test_data_2018$unem, pred_probs[,2])
print(paste0("AUC: ", round(roc_auc, 2)))

[1] "AUC: 0.87"

Plot ROC curve

roc_rf <- roc(test_data_2018$unem, pred_probs[,2])

plot(roc_rf, col="darkblue", print.auc = TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2),
 grid.col=c("green", "red"), max.auc.polygon=TRUE,

 auc.polygon.col="lightblue", print.thres=TRUE)

Second trial: Training with 2 previous years (2015,2016)

What if we try with years 2015 and 2016? We run the same below:

data_train_rf <- data_train %>% filter(year %in% c(2015,2016))

rf.train <- randomForest(unem ~ age+female+nilf+ fshh+margtax+povfam+hipriv+ftptlyr+povpp+wksrec+educ+rincf_all+r

incp_wag, data = data_train_rf, type = "classification", importance = T)

#Setting the threshold given by the ROC

pred<- predict(rf.train, newdata = test_data_2018,"class", cutoff =c(0.99,1-0.99))

confusionMatrix(table(pred,test_data_2018$unem))

Confusion Matrix and Statistics

pred 0 1

0 115854 794
1 20498 2785

Accuracy : 0.8478

95% CI : (0.8459, 0.8497)
No Information Rate : 0.9744

P-Value [Acc > NIR] : 1

Kappa : 0.1706

Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.8497

Specificity : 0.7782

Pos Pred Value : 0.9932
Neg Pred Value : 0.1196

Prevalence : 0.9744
Detection Rate : 0.8279

Detection Prevalence : 0.8336
Balanced Accuracy : 0.8139

'Positive' Class : 0

pred_probs <- predict(rf.train, newdata = test_data_2018, type = "prob")
pred_threshold <- ifelse(pred_probs[,2] > 0.1, "1", "0")

roc_auc <- auc(test_data_2018$unem, pred_probs[,2])
print(paste0("AUC: ", round(roc_auc, 2)))

[1] "AUC: 0.87"

roc_rf <- roc(test_data_2018$unem, pred_probs[,2])

plot(roc_rf, col="darkblue", print.auc = TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2),

 grid.col=c("green", "red"), max.auc.polygon=TRUE,
 auc.polygon.col="lightblue", print.thres=TRUE)

Our AUC is almost identical for the model using data from 2015 and 2016 compared to 2016 and 2017. This offers a key insight: long-term and
short-term unemployment might have a similar prediction power of future unemployment.

We thus are indifferent to retain either of the AUC from both Random Forest models which are higher than for the logistic model.

Therefore, until now we retain the Random Forest model to predict individual unemployment.

Third trial: Training with 2017 and down-sampling techniques

Lastly, since ML classification algorithms are sensitive to imbalance in the predictor classes, we try to address the imbalance of the dataset in order
to improve the performance of our model with re-sampling methods. To do so, we only use the data for 2017, and split it in train and test to train the
model to perform cross-validation.

Drop NAs for variables in the model

data_train_2017 <- full_data %>% drop_na(unem,age,female,nilf, fshh,margtax,povfam,hipriv,ftptlyr,povpp,wksrec,ed
uc,rincf_all,rincp_wag)

data_train_2017 %>% filter(year == 2017)

set.seed(42)

index <- createDataPartition(data_train_2017$unem, p = 0.7, list = FALSE)

train_data <- data_train_2017[index,]
test_data <- data_train_2017[-index,]

Now, we set the parameter for the under-sampling method and train the model. In this way, we randomly select a subset of samples from the class
with more instances (employed) to match the number of samples coming from each class. With caret, we can do it by adding the sampling option
to the trainControl and set “down” for under-sampling.

#Set parameters for down-sampling

ctrl <- trainControl(method = "repeatedcv", #resampling method: cv
 number = 10, #number of folds

 repeats = 10,
 verboseIter = FALSE,#training log

 sampling = "down")#sampling after resampling: down

set.seed(42)

model_rf_under <- caret::train(unem ~ age+female+nilf+ fshh+margtax+povfam+hipriv+ftptlyr+povpp+wksrec+educ+rincf
_all+rincp_wag,

 data = train_data,
 method = "rf",

 preProcess = c("scale", "center"),#scale data

 trControl = ctrl)

Having the model, we use as test data the data for 2018 to predict unemployment and check performance metrics.

Dropping NAs like in the training test

test_data_2018 <- test_data_2018 %>% drop_na(unem,age,female,nilf, fshh,margtax,povfam,hipriv,ftptlyr,povpp,wksr

ec,educ,rincf_all,rincp_wag)

Change class to "probability" to draw AUC

pred_probs <- predict(model_rf_under, newdata = test_data_2018, type = "prob")

Choose threshold

pred_threshold <- ifelse(pred_probs[,2] > 0.5, "1", "0")

Create confusion matrix

confusionMatrix(table(pred_threshold, test_data_2018$unem))

Confusion Matrix and Statistics

pred_threshold 0 1

0 119087 826
1 17265 2753

Accuracy : 0.8707

95% CI : (0.8689, 0.8725)

No Information Rate : 0.9744
P-Value [Acc > NIR] : 1

Kappa : 0.1986

Mcnemar's Test P-Value : <2e-16

Sensitivity : 0.8734
Specificity : 0.7692

Pos Pred Value : 0.9931
Neg Pred Value : 0.1375

Prevalence : 0.9744
Detection Rate : 0.8510

Detection Prevalence : 0.8569
Balanced Accuracy : 0.8213

'Positive' Class : 0

Calculate and print AUC

roc_auc <- auc(test_data_2018$unem, pred_probs[,2])
print(paste0("AUC: ", round(roc_auc, 2)))

[1] "AUC: 0.9"

Plot ROC curve

roc_rf <- roc(test_data_2018$unem, pred_probs[,2])
plot(roc_rf, col="darkblue", print.auc = TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2),

 grid.col=c("green", "red"), max.auc.polygon=TRUE,
 auc.polygon.col="lightblue", print.thres=TRUE)

From the new ROC and AUC, it is clear that our model has improved, reaching a level of 0.9 in area under the curve!

Conclusions
All in all, in this project we aimed at predicting individual unemployment through models with the highest area under the ROC curve possible. The
biggest challenge was cleaning the data, as there are many variables in the CPS dataset with different classifications. Moreover, we did not have
access to the codebook and so we had to “infer” the meaning of many of them.

After cleaning and performing exploratory data analysis, we ended up with over 60 variables. Concerning the choice of models, we first thought of
carrying out a LASSO regression that would automatically select the most relevant variables. We used the output of the LASSO model, along with
some socioeconomic (age, gender) and income characteristics, to build two potential models to predict individual unemployment: logistic and
Random Forest classifier. Since the dataset was very imbalanced, we resorted to resampling techniques to enhance performance. We included
different years in our data, but we faced computational capacity restrictions, making us to choose just the closest years to 2018:

The logistic was built with data from 2013 to 2017
First RF with data from 2016 and 2017
Second RF with data from 2015 and 2016
Down-sampled RF with data from 2017

After running the models and evaluating their performance using test data through key metrics like accuracy, and most importantly, ROC and AUC,
we selected as best model the Random Forest model with 13 variables, in its option with down-sampling method for 2017 data.

It is worth noting that, as we increased the size of our sample (i.e. as we included data from surveys from other years), our models performed
(slightly) better. Hence, the predictive capacity of our models would have been higher had we not had computational capacity restrictions.

In the end, we obtained an AUC of 0.90 for our chosen model.

https://www.bls.gov/cps/data-overview.htm
https://towardsdatascience.com/random-forest-in-r-f66adf80ec9

